
Version 1 Open

The BigHex Machine
David May: October 20, 2016

Background

The BigHex machine is specifically designed as a very simple computer suitable
for explaining how a computer works. Further, its instruction set requires a very
small compiler, but is powerful enough to implement useful programs. The main
features of the instruction set are:

• Short instructions are provided to allow efficient access to regions in mem-
ory allocated by compilers including a procedure calling stack; these also
provide efficient branching and subroutine calling.

• The memory is addressed as a collection of 16-bit words; however the in-
structions are all 8-bit so instruction addresses refer to a specific byte posi-
tion within a word.

• The processor has a small number of registers. Some registers are used for
specific purposes such as accessing the program or building large constants.

• Instructions are easy to decode.

All instructions are 8-bit; each instruction contains 4 bits representing an opera-
tion and 4 bits of an immediate operand. A special instruction, OPR causes its
operand to be interpreted as an inter-register operation. Instruction prefixes are
used to extend the range of immediate operands and to provide more inter-register
operations.

The prefixes are:

• PFIX which concatenates its 4-bit immediate operand with the 4-bit imme-
diate operand of the next 8-bit instruction.

• NFIX which complements its its 4-bit immediate operand and then concate-
nates the result with the 4-bit immediate operand of the next 8-bit instruc-
tion.

David May: October 20, 2016 1

Version 1 Open

The prefixes are inserted automatically by compilers and assemblers.

The normal state of a processor is represented by 4 registers. Two of the registers
are used to hold the sources and destination of arithmetic and logic operations.
Another (the operand register) is used to accumulate the operands of the prefixes.

register use

pc the program counter

oreg the operand register

areg left-hand operand and result of arithmetic
breg right-hand operand of arithmetic

Instruction Issue and Execution

The instruction set has only twenty instructions and allows a very simple design.

The main components are:

• The registers.

• The A multiplexor, which selects one of areg, pc, oreg and zero.

• The B mutiplexor, which selects one of breg, oreg and zero.

• The arithmetic unit, which combines the operands selected by the A and B
multiplexors.

• The memory, which takes addresses from the arithmetic unit output and data
from areg.

• The result multiplexor, which selects either the memory data output or the
arithmetic unit output; this multiplexor output is supplied to the registers.

• The instruction register, decoder and control matrix.

• The clock and timing generator.

Each instruction is executed in three stages: the instruction is fetched; the pc is
incremented; the instruction is executed.

David May: October 20, 2016 2

Version 1 Open

Instruction set Notation and Definitions

In the following description

mem represents the memory
port represents a set of input-output ports
display represents a display consisting of 16 rows each of 16 bits

pc represents the program counter
oreg represents the operand register
areg represents the left-hand operand register
breg represents the right-hand operand register
row represents the row of the diplay next to be updated

u4 is a 4-bit unsigned source operand in the range [0 : 15]

Data access

The data access instructions fall into several groups. One of these provides access
via the stack pointer.

LDAM areg ← mem[oreg] load from memory
LDBM breg ← mem[oreg] load from memory
STAM mem[oreg]← areg store to memory

Access to constants and program addresses is provided by instructions which ei-
ther load values directly or enable them to be loaded from a location in the pro-
gram:

LDAC areg ← oreg load constant
LDBC breg ← oreg load constant
LDAP areg ← pc+ oreg load address in program

Access to data structures is provided by instructions which combine an address
with an offset:

LDAI areg ← mem[areg + oreg] load from memory
LDBI breg ← mem[breg + oreg] load from memory
STAI mem[breg + oreg]← areg store to memory

Expression Evaluation

Expressions are evaluated using the ADD and SUB instructions.

ADD areg ← areg + breg add
SUB areg ← areg − breg subtract

David May: October 20, 2016 3

Version 1 Open

Branching, jumping and calling

The branch instructions include conditional and unconditional relative branches.
A branch using an offset in the stack is provided to support jump tables.

BR pc← pc+ oreg branch relative unconditional
BRZ if areg = 0 then pc← pc+ oreg branch relative zero
BRN if areg < 0 then pc← pc+ oreg branch relative negative

BRB pc← breg + oreg branch absolute

SVC system call

To call a procedure, the return address can be loaded using the LDAP instruction
and the BR instruction can be used to branch to the procedure entrypoint. The
procedure entry will store the return address; the exit will load this return address
into breg and use a BRB instruction to branch back to the calling procedure.

Input and Output

Data can be transferred to an from the input-output ports uing IN and OUT in-
structions.

IN areg ← port[areg]; oreg = 0; input from port
OUT port[breg]← areg; oreg = 0; output to port

The BigHex machine has four illuminated buttons connected to port 0 and another
four connected to port 1. Each button corresponds to a single bit of the word being
input or output.

position colour port bit

left blue 0 0
left green 0 1
left red 0 2
left yellow 0 3

right blue 1 0
right green 1 1
right red 1 2
right yellow 1 3

There is also a display consisting of 16 rows each of 16 pixels; the rows are
illuminated in sequence by copying words from the top 16 locations in memory.

David May: October 20, 2016 4

Version 1 Open

Instruction summary

LDAM areg ← mem[oreg] load from memory
LDBM breg ← mem[oreg] load from memory
STAM mem[oreg]← areg store to memory

LDAC areg ← oreg load constant
LDBC breg ← oreg load constant
LDAP areg ← pc+ oreg load address in program

LDAI areg ← mem[areg + oreg] load from memory
LDBI breg ← mem[breg + oreg] load from memory
STAI mem[breg + oreg]← areg store to memory

BR pc← pc+ oreg branch relative unconditional
BRZ if areg = 0 then pc← pc+ oreg branch relative zero
BRN if areg < 0 then pc← pc+ oreg branch relative negative

BRB pc← breg + oreg branch absolute

ADD areg ← areg + breg add
SUB areg ← areg − breg subtract

IN areg ← port[areg] input from port
OUT port[breg]← areg output to port

David May: October 20, 2016 5

Version 1 Open

C Simulator

The following C program simulates the BigHex computer. It includes the instruc-
tions to perform input-output, representing the ports as an array. Similarly, it
includes transfers to the display. It can easily be extended as appropriate to trans-
fer the contents of the ports to and from a host operating system, and to transfer
the contents of the display to a host operating system.

#include "stdio.h"

#define true 1
#define false 0

#define i_ldam 0x0
#define i_ldbm 0x1
#define i_stam 0x2

#define i_ldac 0x3
#define i_ldbc 0x4
#define i_ldap 0x5

#define i_ldai 0x6
#define i_ldbi 0x7
#define i_stai 0x8

#define i_br 0x9
#define i_brz 0xA
#define i_brn 0xB
#define i_brb 0xC

#define i_opr 0xD
#define i_pfix 0xE
#define i_nfix 0xF

#define o_add 0x0
#define o_sub 0x1
#define o_in 0x2
#define o_out 0x3

David May: October 20, 2016 6

Version 1 Open

FILE *codefile;

unsigned short mem[32768];
unsigned char *pmem = (unsigned char *) mem;

unsigned char port[4];
unsigned short display[16];

unsigned short pc;
unsigned short areg;
unsigned short breg;
unsigned short row;
unsigned short oreg;

unsigned char inst;

unsigned int running;

David May: October 20, 2016 7

Version 1 Open

main()
{ load();

running = true; oreg = 0; pc = 0; row = 0;

while (running)
{ inst = pmem[pc];

pc = pc + 1;
oreg = oreg | (inst & 0xf);

switch ((inst >> 4) & 0xf)
{ case i_ldam: areg = mem[oreg]; oreg = 0; break;
case i_ldbm: breg = mem[oreg]; oreg = 0; break;
case i_stam: mem[oreg] = areg; oreg = 0; break;

case i_ldac: areg = oreg; oreg = 0; break;
case i_ldbc: breg = oreg; oreg = 0; break;
case i_ldap: areg = pc + oreg; oreg = 0; break;

case i_ldai: areg = mem[areg + oreg]; oreg = 0; break;
case i_ldbi: breg = mem[breg + oreg]; oreg = 0; break;
case i_stai: mem[breg + oreg] = areg; oreg = 0; break;

case i_br: pc = pc + oreg; oreg = 0; break;
case i_brz: if (areg == 0) pc = pc + oreg; oreg = 0;break;
case i_brn: if ((int)areg < 0) pc = pc + oreg; oreg = 0;break;
case i_brb: pc = pc + oreg; break;

case i_pfix: oreg = oreg << 4; break;
case i_nfix: oreg = 0xFFFFFF00 | (oreg << 4); break;
case i_opr:

switch (oreg)
{ case o_add: areg = areg + breg; break;
case o_sub: areg = areg - breg; break;
case o_in: areg = port[areg]; break;
case o_out: port[breg] = areg; break;

};
oreg = 0; break;

};
display[row] = mem[0x7ff0 + row]; row = (row + 1) & 0xf;

}
}

David May: October 20, 2016 8

Version 1 Open

load()
{ codefile = fopen("sim2", "rb");

loadmem(0);
codefile = fopen("sim3", "rb");
loadmem(1);

}

loadmem(n)
{ char ch;

int addr;
addr = n;
ch = fgetc(codefile);
while (((’0’ <= ch) && (ch <= ’9’)) ||

((’A’ <= ch) && (ch <= ’F’)))
{ pmem[addr] = ((hexval(ch) << 4) | hexval(fgetc(codefile)));

ch = fgetc(codefile); ch = fgetc(codefile);
addr = addr + 2;

}
};

hexval(ch)
{ int v;

if ((’0’ <= ch) && (ch <= ’9’))
v = ch - ’0’;

else
v = (ch - ’A’) + 10;

return v;
}

David May: October 20, 2016 9

